🦜
LangChain Integration
Popular
AI & Machine Learning
Native SERPII loader for building search-powered AI agents and chains
Official DocumentationFeatures
Document Loader
Load search results as documents for RAG applications.
Agent Tools
Use SERPII as a tool in LangChain agents for autonomous search.
Memory Integration
Store and recall search results in conversation memory.
Chain Composition
Combine search with other LangChain components seamlessly.
Setup
Step 1
Install LangChain
Install LangChain and required dependencies.
pip install langchain langchain-openai requestsStep 2
Create SERPII Tool
Define a custom tool for LangChain agents.
from langchain.tools import Tool
from langchain.agents import initialize_agent, AgentType
from langchain_openai import ChatOpenAI
import requests
import os
def search_serpii(query: str) -> str:
"""Search the web using SERPII API"""
response = requests.get(
"https://api.serpii.com/v1/google/light/search",
params={"q": query},
headers={"x-api-key": os.getenv("SERPII_API_KEY")}
)
results = response.json()["organic_results"][:5]
return "\n\n".join([
f"{r['position']}. {r['title']}\n{r['link']}\n{r.get('snippet', '')}"
for r in results
])
serpii_tool = Tool(
name="Search",
func=search_serpii,
description="Search the web for current information. Input should be a search query."
)Code Examples
from langchain.tools import Tool
from langchain.agents import initialize_agent, AgentType
from langchain_openai import ChatOpenAI
import requests
import os
# Define SERPII tool
def search_serpii(query: str) -> str:
response = requests.get(
"https://api.serpii.com/v1/google/light/search",
params={"q": query},
headers={"x-api-key": os.getenv("SERPII_API_KEY")}
)
results = response.json()["organic_results"][:5]
return "\n\n".join([
f"{r['position']}. {r['title']}\n{r['link']}\n{r.get('snippet', '')}"
for r in results
])
serpii_tool = Tool(
name="Search",
func=search_serpii,
description="Search the web for current information."
)
# Create agent
llm = ChatOpenAI(temperature=0, model="gpt-4")
agent = initialize_agent(
[serpii_tool],
llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True
)
# Use agent
result = agent.run("What are the latest developments in quantum computing?")
print(result)Common Use Cases
- →Building AI agents with web search capabilities
- →Creating RAG applications with real-time data
- →Autonomous research assistants
- →Question answering with current information
- →Fact-checking and verification agents
- →Competitive intelligence gathering
Need help with this integration? Check our API documentation or contact support.